The Non-Homogeneous Stokes System in Exterior Domains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The L∞-Stokes semigroup in exterior domains

The Stokes semigroup on a bounded domain is an analytic semigroup on spaces of bounded functions as was recently shown by the authors based on an a priori L∞-estimate for solutions to the linear Stokes equations. In this paper, we extend our approach to exterior domains and prove that the Stokes semigroup is uniquely extendable to an analytic semigroup on spaces of bounded functions.

متن کامل

Asymptotics of solutions to the Navier-Stokes system in exterior domains

We consider the incompressible Navier-Stokes equations with the Dirichlet boundary condition in an exterior domain of Rn with n > 2. We compare the long-time behaviour of solutions to this initial-boundary value problem with the long-time behaviour of solutions of the analogous Cauchy problem in the whole space Rn. We find that the long-time asymptotics of solutions to both problems coincide ei...

متن کامل

Weighted Lp − Lq estimates of Stokes semigroup in exterior domains

We consider the Navier-Stokes equations in exterior domains and in the weighted L space. For this purpose, we consider the L − L estimates of Stokes semigroup with weight 〈x〉 type. Our proof is based on the cut-off technique with local energy decay estimate proved by Dan, Kobayashi and Shibata [1] and the weighted L − L estimates of Stokes semigroup in the whole space proved by Kobayashi and Ku...

متن کامل

On the Dimension of the Attractor for the Non-Homogeneous Navier-Stokes Equations in Non-Smooth Domains

10] Z. Shen, Boundary value problems for parabolic Lam e systems and a nonstation-ary linearized system of Navier-Stokes equations in Lipschitz cylinders, Amer. J.

متن کامل

On the Dimension of the Attractor for the Non-Homogeneous Navier-Stokes Equations in Non-Smooth Domains

This paper concerns the two-dimensional NavierStokes equations in a Lipschitz domain Ω with nonhomogeneous boundary condition u = φ on ∂Ω. Assuming φ ∈ L∞(∂Ω), we establish the existence of the universal attractor, and show that its dimension is bounded by c1G + c2Re, where G is the Grashof number and Re the Reynolds number.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PAMM

سال: 2008

ISSN: 1617-7061

DOI: 10.1002/pamm.200810757